organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Sai-Feng Pei,^a Cui-Rong Sun,^a* Mao-Lin Hu^b and Yuan-Jiang Pan^a

Chemistry Department, Zhejiang University, Hangzhou 310027, People's Republic of China, and ^bWenzhou University, Wenzhou 325027, People's Republic of China

Correspondence e-mail: suncuirong@zju.edu.cn

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.007 Å R factor = 0.063 wR factor = 0.136 Data-to-parameter ratio = 7.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Dicatharanthinium (2*R*,3*R*)-tartrate trihydrate

The title salt, bis(methyl 3,4-didehydroibogamin-6-ium-18carboxylate) (2*R*,3*R*)-tartrate trihydrate, $2C_{21}H_{25}N_2O_2^+$.- $C_4H_4O_6^{2-}\cdot 3H_2O$, contains two catharanthinium cations, a (2*R*,3*R*)-tartrate anion and three water solvent molecules. The cation contains an indole ring system with a planar conformation and a seven-membered nitrogen-containing ring with a distorted chair conformation. A network of $O-H\cdots O$ and $N-H\cdots O$ intermolecular hydrogen bonds stabilizes the crystal packing.

Comment

Catharanthine is an important member of the iboga class of indole alkaloids (Gorman *et al.*, 1959). It is a chemical and presumed biological precursor of the antitumor alkaloids vinblastine and vincristine, two effective anticancer agents used in the treatment of a number of human cancers (Neuss & Neuss, 1990). Its synthesis has been widely investigated (Reding *et al.*, 1999; Büchi *et al.*, 1970).

The catharanthinium cation of the title salt, (I), contains an indole ring system and a seven-membered nitrogen-containing ring (Fig. 1). The structure of this cation is similar to that of ibogamine, except for the incorporation of the COOCH₃ group in position C9 and the double-bond character of C16=C17 (Soriano-García et al., 1988). The indole ring system is planar and the seven-membered ring adopts a distorted chair conformation, which has been observed in the X-ray crystallographic study of ibogamine (Soriano-García et al., 1988). The fused six-membered rings in the cations (C13-C15/N2/C10/C9 and C14/C16/C17/C10/N2/C15, or C34-C36/ N4/C31/C30 and C35/C37/C38/C31/N4/C36) adopt boat conformations. There are three chiral centres (C9/C10/C14 and C30/C31/C35) in the catharanthinium cations, and the assigned absolute configurations are 9R,10S,14S and 30R,31S,35S, according to the absolute configuration of the starting (2R,3R)-tartaric acid. Selected bond lengths and angles are listed in Table 1.

Received 16 January 2006 Accepted 8 March 2006

01414 Pei et al. • 2C₂₁H₂₅N₂O₂⁺·C₄H₄O₆²⁻·3H₂O doi:10.1107/S1600536806008713 Acta Cryst. (2006). E**62**, o1414–o1416

© 2006 International Union of Crystallography All rights reserved

Mo $K\alpha$ radiation

reflections

 $\theta = 2.2-24.1^{\circ}$ $\mu = 0.10~\mathrm{mm}^{-1}$

T = 293 (2) K

 $R_{\rm int} = 0.049$

 $\theta_{\rm max} = 25.2^{\circ}$

 $h = -12 \rightarrow 7$

 $k = -22 \rightarrow 22$

 $l = -27 \rightarrow 28$

+ 1.3486P]

Block, colourless

 $0.31 \times 0.27 \times 0.23 \text{ mm}$

4516 independent reflections

3899 reflections with $I > 2\sigma(I)$

Cell parameters from 3507

Figure 1

The asymmetric unit of the title salt, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

The packing of (I), showing $O-H \cdots O$ and $N-H \cdots O$ hydrogen-bond interactions as dashed lines. H atoms have been omitted.

The packing of the salt in the crystal structure is illustrated in Fig. 2; it is stabilized by a network of intermolecular O- $H \cdots O$ and $N - H \cdots O$ interactions (Table 2).

Experimental

Catharanthine was isolated from Catharanthus roseums G. Don, and it was dissolved with equimolar (2R,3R)-tartaric acid in ethanol (containing 5% water). Single crystals suitable for X-ray structure analysis were obtained by slow evaporation of the solution at room temperature.

Crystal data

 $2C_{21}H_{25}N_2O_2^+ \cdot C_4H_4O_6^{-2-} \cdot 3H_2O_6^{-2-}$ $M_r = 876.98$ Orthorhombic, $P2_12_12_1$ a = 10.1147 (4) Å b = 18.8215 (8) Å c = 23.4907 (9) Å V = 4472.0 (3) Å³ Z = 4 $D_x = 1.303 \text{ Mg m}^{-3}$

Data collection

Bruker SMART APEX areadetector diffractometer φ and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2002) $T_{\min} = 0.965, T_{\max} = 0.971$ 24131 measured reflections

Refinement

Refinement on F^2 $w = 1/[\sigma^2(F_0^2) + (0.0524P)^2]$ $R[F^2 > 2\sigma(F^2)] = 0.063$ wR(F²) = 0.136 where $P = (F_0^2 + 2F_c^2)/3$ S = 1.19 $(\Delta/\sigma)_{\rm max} = 0.001$ $\Delta \rho_{\rm max} = 0.20 \text{ e } \text{\AA}^{-3}$ 4516 reflections 574 parameters $\Delta \rho_{\rm min} = -0.17 \text{ e } \text{\AA}^{-3}$ H-atom parameters constrained

Table 1

Selected geometric parameters (Å, °).

N2-C11	1.497 (6)	C9-C10	1.560 (6)
N2-C15	1.506 (6)	C11-C12	1.505 (6)
N2-C10	1.518 (5)	C14-C16	1.502 (7)
C8-C9	1.523 (5)	C16-C17	1.327 (7)
C9-C20	1.538 (6)	C17-C18	1.501 (7)
C11 N2 C15	114.0 (4)	N2 C11 C12	1165(4)
C11 = N2 = C13	114.9(4)	$N_2 = C_{11} = C_{12}$	110.3(4)
C11-N2-C10	117.6 (3)		114.4 (4)
C15 - N2 - C10	110.7 (3)	C16 - C14 - C15	106.9 (4)
C8-C9-C20	109.2 (3)	C15-C14-C13	107.3 (4)
C20-C9-C13	108.7 (4)	C17-C16-C14	115.4 (4)
C17-C10-N2	105.8 (3)	C16-C17-C10	111.5 (4)
N2-C10-C9	111.4 (3)	C18-C17-C10	119.6 (4)
N1-C8-C9-C13	110.8 (4)	C13-C9-C10-N2	53.2 (4)
C8-C9-C10-N2	-70.2 (4)	C9-C10-C17-C16	58.6 (5)

Table 2			
Hydrogen-bond	geometry (A	Å, °`).

$D-H\cdots A$ $D-H$ $H\cdots A$ $D\cdots A$ $D-H\cdots$ N1-H1A\cdots O5 0.86 2.02 2.821 (5) 155 N2-H2\cdots O10^i 0.91 1.76 2.653 (5) 167 N3-H3A\cdots O11 0.86 1.99 2.773 (5) 151 N4-H4\cdots O6^{ii} 0.91 1.82 2.713 (4) 166 07-H7\cdots O5 0.82 2.19 2.623 (4) 113	_
N1-H1A···O5 0.86 2.02 2.821 (5) 155 N2-H2··O10 ⁱ 0.91 1.76 2.653 (5) 167 N3-H3A··O11 0.86 1.99 2.773 (5) 151 N4-H4··O6 ⁱⁱ 0.91 1.82 2.713 (4) 166 Q7-H7··O5 0.82 2.19 2.623 (4) 113	A
N2-H2···O10 ⁱ 0.91 1.76 2.653 (5) 167 N3-H3A···O11 0.86 1.99 2.773 (5) 151 N4-H4···O6 ⁱⁱ 0.91 1.82 2.713 (4) 166 O7-H7···O5 0.82 2.19 2.623 (4) 113	
N3-H3A···O11 0.86 1.99 2.773 (5) 151 N4-H4··O6 ⁱⁱ 0.91 1.82 2.713 (4) 166 O7-H7··O5 0.82 2.19 2.623 (4) 113	
N4 $-$ H4 \cdots O6 ⁱⁱ 0.91 1.82 2.713 (4) 166 O7 $-$ H7 \cdots O5 0.82 2.19 2.623 (4) 113	
$07-H7\cdots05$ 0.82 2.19 2.623 (4) 113	
2. III III III III III III III	
O8-H8···O9 0.82 2.15 2.631 (7) 117	
$O11 - H11C \cdots O10$ 0.85 2.02 2.862 (6) 172	
O11-H11D···O12 0.86 1.89 2.726 (5) 165	
$O12-H12C\cdots O9^{iii}$ 0.85 1.89 2.720 (6) 164	
O12-H12D···O13 0.86 1.96 2.760 (7) 155	
$O13-H13C\cdots O6^{iv}$ 0.83 1.97 2.781 (5) 166	
$O13-H13D\cdots O9$ 0.84 2.04 2.854 (5) 164	

Symmetry codes: (i) $-x + \frac{1}{2}, -y + 1, z + \frac{1}{2}$; (ii) $-x + \frac{3}{2}, -y + 1, z - \frac{1}{2}$; (iii) $x + \frac{1}{2}, -y + \frac{1}{2}, -z + 1;$ (iv) $x - \frac{1}{2}, -y + \frac{1}{2}, -z + 1.$

H atoms on water molecules were located in a difference Fourier map and refined as riding in their as-found positions, with $U_{iso}(H) = 1.2U_{eq}(O)$. Other H atoms were placed in calculated positions, with C-H = 0.93 (aromatic), 0.96 (methyl), 0.97 (methylene) or 0.98 Å (methine) and N-H = 0.86 (conjugated) or 0.91 Å (quaternary amine), and were refined as riding, with $U_{iso}(H) = 1.5U_{eq}$ (methyl) or $1.2U_{eq}$ (other C or N). In the absence of significant anomalous dispersion effects, Friedel pairs were averaged.

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997) and *XP* (Siemens, 1994); software used to prepare material for publication: *SHELXL97*.

This work was supported by the Natural Science Foundation of Zhenjiang Province.

References

- Bruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Büchi, G., Kulsa, P., Ogasawara, K. & Rosati, R. L. (1970). J. Am. Chem. Soc. 92, 999–1005.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Gorman, M., Neuss, N, Svoboda, G. H., Barnes, A. J. & Cone, N. J. (1959). J. Am. Pharm. Assoc. (Sci. Ed.), 48, 256–257.
- Neuss, N. & Neuss, M. N. (1990). The Therapeutic Use of Bisindole Alkaloids from Catharanthus. In The Alkaloids, Vol. 37, edited by A. Brossi & M. Suffness, pp. 229-232. New York: Academic Press.
- Reding, M. T. & Fukuyama, T. (1999). Org. Lett. 1, 973–976.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Siemens (1994). XP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Soriano-García, M., Walls, F., Rodríguez, A. & López Celis, I. (1988). J. Crystallogr. Spectrosc. Res. 18, 197–206.