Acta Crystallographica Section E

## Structure Reports

Online
ISSN 1600-5368

## Sai-Feng Pei, ${ }^{\text {a }}$ Cui-Rong Sun, ${ }^{\text {a }}$ *

 Mao-Lin $\mathrm{Hu}^{\text {b }}$ and Yuan-Jiang Pan ${ }^{\text {a }}$${ }^{\text {a }}$ Chemistry Department, Zhejiang University, Hangzhou 310027, People's Republic of China, and ${ }^{\text {b }}$ Wenzhou University, Wenzhou 325027, People's Republic of China

Correspondence e-mail: suncuirong@zju.edu.cn

## Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
$R$ factor $=0.063$
$w R$ factor $=0.136$
Data-to-parameter ratio $=7.9$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
## Dicatharanthinium (2R,3R)-tartrate trihydrate

The title salt, bis(methyl 3,4-didehydroibogamin-6-ium-18carboxylate) ( $2 R, 3 R$ )-tartrate trihydrate, $2 \mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}$.$\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{6}{ }^{2-} \cdot 3 \mathrm{H}_{2} \mathrm{O}$, contains two catharanthinium cations, a $(2 R, 3 R)$-tartrate anion and three water solvent molecules. The cation contains an indole ring system with a planar conformation and a seven-membered nitrogen-containing ring with a distorted chair conformation. A network of $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ intermolecular hydrogen bonds stabilizes the crystal packing.

## Comment

Catharanthine is an important member of the iboga class of indole alkaloids (Gorman et al., 1959). It is a chemical and presumed biological precursor of the antitumor alkaloids vinblastine and vincristine, two effective anticancer agents used in the treatment of a number of human cancers (Neuss \& Neuss, 1990). Its synthesis has been widely investigated (Reding et al., 1999; Büchi et al., 1970).

Received 16 January 2006
Accepted 8 March 2006


The catharanthinium cation of the title salt, (I), contains an indole ring system and a seven-membered nitrogen-containing ring (Fig. 1). The structure of this cation is similar to that of ibogamine, except for the incorporation of the $\mathrm{COOCH}_{3}$ group in position C9 and the double-bond character of C16=C17 (Soriano-García et al., 1988). The indole ring system is planar and the seven-membered ring adopts a distorted chair conformation, which has been observed in the X-ray crystallographic study of ibogamine (Soriano-García et al., 1988). The fused six-membered rings in the cations (C13$\mathrm{C} 15 / \mathrm{N} 2 / \mathrm{C} 10 / \mathrm{C} 9$ and $\mathrm{C} 14 / \mathrm{C} 16 / \mathrm{C} 17 / \mathrm{C} 10 / \mathrm{N} 2 / \mathrm{C} 15$, or $\mathrm{C} 34-\mathrm{C} 36 /$ N4/C31/C30 and C35/C37/C38/C31/N4/C36) adopt boat conformations. There are three chiral centres (C9/C10/C14 and $\mathrm{C} 30 / \mathrm{C} 31 / \mathrm{C} 35$ ) in the catharanthinium cations, and the assigned absolute configurations are $9 R, 10 S, 14 S$ and $30 R, 31 S, 35 S$, according to the absolute configuration of the starting $(2 R, 3 R)$-tartaric acid. Selected bond lengths and angles are listed in Table 1.


Figure 1
The asymmetric unit of the title salt, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the $50 \%$ probability level.


Figure 2
The packing of (I), showing $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen-bond interactions as dashed lines. H atoms have been omitted.

The packing of the salt in the crystal structure is illustrated in Fig. 2; it is stabilized by a network of intermolecular $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ interactions (Table 2).

## Experimental

Catharanthine was isolated from Catharanthus roseums G. Don, and it was dissolved with equimolar $(2 R, 3 R)$-tartaric acid in ethanol (containing $5 \%$ water). Single crystals suitable for X-ray structure analysis were obtained by slow evaporation of the solution at room temperature.

## Crystal data

$2 \mathrm{C}_{21} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+} \cdot \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{6}{ }^{2-} \cdot 3 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=876.98$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=10.1147$ (4) $\AA$
$b=18.8215$ ( 8 ) $\AA$
$c=23.4907$ (9) $\AA$
$V=4472.0(3) \AA^{3}$
$Z=4$
$D_{x}=1.303 \mathrm{Mg} \mathrm{m}^{-3}$
Data collection
Bruker SMART APEX area-
detector diffractometer
$\varphi$ and $\omega$ scans
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
$T_{\text {min }}=0.965, T_{\text {max }}=0.971$
24131 measured reflections

## Refinement

Refinement on $F^{2}$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0524 P)^{2}\right. \\
& +1.3486 P] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\text {max }}=0.001 \\
& \Delta \rho_{\text {max }}=0.20 \mathrm{e}^{\AA^{-3}} \\
& \Delta \rho_{\text {min }}=-0.17 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ( $\mathrm{A},{ }^{\circ}$ ).

| N2-C11 | $1.497(6)$ | $\mathrm{C} 9-\mathrm{C} 10$ | $1.560(6)$ |
| :--- | :---: | :--- | :--- |
| $\mathrm{N} 2-\mathrm{C} 15$ | $1.506(6)$ | $\mathrm{C} 11-\mathrm{C} 12$ | $1.505(6)$ |
| $\mathrm{N} 2-\mathrm{C} 10$ | $1.518(5)$ | $\mathrm{C} 14-\mathrm{C} 16$ | $1.502(7)$ |
| $\mathrm{C} 8-\mathrm{C} 9$ | $1.523(5)$ | $\mathrm{C} 16-\mathrm{C} 17$ | $1.327(7)$ |
| $\mathrm{C} 9-\mathrm{C} 20$ | $1.538(6)$ | $\mathrm{C} 17-\mathrm{C} 18$ | $1.501(7)$ |
|  |  |  |  |
| $\mathrm{C} 11-\mathrm{N} 2-\mathrm{C} 15$ | $114.9(4)$ | $\mathrm{N} 2-\mathrm{C} 11-\mathrm{C} 12$ | $116.5(4)$ |
| $\mathrm{C} 11-\mathrm{N} 2-\mathrm{C} 10$ | $117.6(3)$ | $\mathrm{C} 7-\mathrm{C} 12-\mathrm{C} 11$ | $114.4(4)$ |
| $\mathrm{C} 15-\mathrm{N} 2-\mathrm{C} 10$ | $110.7(3)$ | $\mathrm{C} 16-\mathrm{C} 14-\mathrm{C} 15$ | $106.9(4)$ |
| C8-C9-C20 | $109.2(3)$ | $\mathrm{C} 15-\mathrm{C} 14-\mathrm{C} 13$ | $107.3(4)$ |
| C20-C9-C13 | $108.7(4)$ | $\mathrm{C} 17-\mathrm{C} 16-\mathrm{C} 14$ | $115.4(4)$ |
| $\mathrm{C} 17-\mathrm{C} 10-\mathrm{N} 2$ | $105.8(3)$ | $\mathrm{C} 16-\mathrm{C} 17-\mathrm{C} 10$ | $111.5(4)$ |
| $\mathrm{N} 2-\mathrm{C} 10-\mathrm{C} 9$ | $111.4(3)$ | $\mathrm{C} 18-\mathrm{C} 17-\mathrm{C} 10$ | $119.6(4)$ |
|  |  |  |  |
| N1-C8-C9-C13 | $110.8(4)$ | $\mathrm{C} 13-\mathrm{C} 9-\mathrm{C} 10-\mathrm{N} 2$ | $53.2(4)$ |
| $\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10-\mathrm{N} 2$ | $-70.2(4)$ | $\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 17-\mathrm{C} 16$ | $58.6(5)$ |

Table 2
Hydrogen-bond geometry ( $\AA^{\circ},{ }^{\circ}$ ).

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{N} 1-\mathrm{H} 14 \cdots \mathrm{O}$ | 0.86 | 2.02 | 2.821 (5) | 155 |
| $\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{O} 10^{\text {i }}$ | 0.91 | 1.76 | 2.653 (5) | 167 |
| $\mathrm{N} 3-\mathrm{H} 3$ A $\cdots \mathrm{O} 11$ | 0.86 | 1.99 | 2.773 (5) | 151 |
| $\mathrm{N} 4-\mathrm{H} 4 \cdots \mathrm{O} 6^{\text {ii }}$ | 0.91 | 1.82 | 2.713 (4) | 166 |
| O7-H7 . ${ }^{\text {O }} 5$ | 0.82 | 2.19 | 2.623 (4) | 113 |
| O8-H8 . O 9 | 0.82 | 2.15 | 2.631 (7) | 117 |
| $\mathrm{O} 11-\mathrm{H} 11 C \cdots \mathrm{O} 10$ | 0.85 | 2.02 | 2.862 (6) | 172 |
| $\mathrm{O} 11-\mathrm{H} 11 \mathrm{D} \cdots \mathrm{O} 12$ | 0.86 | 1.89 | 2.726 (5) | 165 |
| $\mathrm{O} 12-\mathrm{H} 12 \mathrm{C} \cdots \mathrm{O} 9^{\text {iii }}$ | 0.85 | 1.89 | 2.720 (6) | 164 |
| $\mathrm{O} 12-\mathrm{H} 12 \mathrm{D} \cdots \mathrm{O} 13$ | 0.86 | 1.96 | 2.760 (7) | 155 |
| $\mathrm{O} 13-\mathrm{H} 13 C \cdots \mathrm{O}^{\text {iv }}$ | 0.83 | 1.97 | 2.781 (5) | 166 |
| O13-H13D . O 9 | 0.84 | 2.04 | 2.854 (5) | 164 |

Symmetry codes: (i) $-x+\frac{1}{2},-y+1, z+\frac{1}{2} ; \quad$ (ii) $\quad-x+\frac{3}{2},-y+1, z-\frac{1}{2}$; (iii) $x+\frac{1}{2},-y+\frac{1}{2},-z+1$; (iv) $x-\frac{1}{2},-y+\frac{1}{2},-z+1$.

## organic papers

H atoms on water molecules were located in a difference Fourier map and refined as riding in their as-found positions, with $U_{\text {iso }}(\mathrm{H})=$ $1.2 U_{\text {eq }}(\mathrm{O})$. Other H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=0.93$ (aromatic), 0.96 (methyl), 0.97 (methylene) or $0.98 \AA$ (methine) and $\mathrm{N}-\mathrm{H}=0.86$ (conjugated) or $0.91 \AA$ (quaternary amine), and were refined as riding, with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}$ (methyl) or $1.2 U_{\text {eq }}$ (other C or N ). In the absence of significant anomalous dispersion effects, Friedel pairs were averaged.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and XP (Siemens, 1994); software used to prepare material for publication: SHELXL97.

This work was supported by the Natural Science Foundation of Zhenjiang Province.

## References

Bruker (2002). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Büchi, G., Kulsa, P., Ogasawara, K. \& Rosati, R. L. (1970). J. Am. Chem. Soc. 92, 999-1005.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Gorman, M., Neuss, N, Svoboda, G. H., Barnes, A. J. \& Cone, N. J. (1959). J. Am. Pharm. Assoc. (Sci. Ed.), 48, 256-257.
Neuss, N. \& Neuss, M. N. (1990). The Therapeutic Use of Bisindole Alkaloids from Catharanthus. In The Alkaloids, Vol. 37, edited by A. Brossi \& M. Suffness, pp. 229-232. New York: Academic Press.
Reding, M. T. \& Fukuyama, T. (1999). Org. Lett. 1, 973-976.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Siemens (1994). XP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Soriano-García, M., Walls, F., Rodríguez, A. \& López Celis, I. (1988). J. Crystallogr. Spectrosc. Res. 18, 197-206.


[^0]:    (C) 2006 International Union of Crystallography All rights reserved

